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An example is considered of the application of a new modification of the well-known programmed iteration method (PIM) for 
solving a simple problem of control under conditions of noise. It is shown that the construction of a control procedure - a 
multivalued quasi-strategy-which solves the initial problem by the “direct” version of the PIM, working in the space of multivalued 
mappings, requires the performance of an infinite number of iterations. The structure of thee iterations is established on the 
basis of the duality of “direct” and “indirect” versions of the PIM (the latter having been used previously to construct value functions 
and stable bridges in Krasovskii’s sense). 0 2003 Elsevier Science Ltd. All rights reserved. 

The structure of the solution of many differential games (DGs) [l-5] is determined by the basic 
Alternative Theorem of Krasovskii and Subbotin (see [3]), which states that the space of positions in 
a pursuit-evasion game admits of an alternative partition into the sum of two sets, one of which - the 
positional absorption set (a stable bridge) - is defined as the set of all initial positions from which the 
pursuer can guarantee that the trajectories of the system will reach the target set. The construction of 
stable bridges used programmed constructions (see, e.g. [3, 4, 6, 71) which, under certain regularity 
conditions [2-4,7], guarantee direct passage from programmed control to synthesis. If those conditions 
are not satisfied, this approach becomes more complicated and other methods are needed, one of which 
is the programmed iteration method (PIM) [8-B] ( see also [5, Chaps IV and VI). It has turned out 
that, for certain non-regular DGs, a solution (the value of the game, a stable bridge) may be constructed 
by means of just two iterated programmed absorptions [8,9], though in other cases the whole infinite 
sequence of programmed iterations must be implemented (see [14,15]). Examples have been described 
(see [14] and various later publications) in which the solution defined by the PIM is obtained in any 
prescribed number of iterations. 

The above examples of DGs are “indirect” in the sense of the construction of the corresponding 
control procedures (the PIM is used to generate a “go-between” in the form of a value function or stable 
bridge). These procedures may be defined on the basis of feedback (Krasovskii’s constructions of 
extremal aiming and extremal shift) or as quasi-strategies (see [16,17] for single-valued quasi-strategies 
and [5,8-l 1,13,14] for multivalued quasi-strategies). Later, a “direct” version of the PIM, which works 
in the space of multivalued mappings, was constructed [18-221; in problems of differential game theory 
it permitted direct iterative construction of a multivalued quasi-strategy, like those described previously 
([5], Chap. IV and [g-11, 13, 14]), which solves a corresponding control problem. 

In many simple DGs, the “direct” version of the PIM generates a solution in two iterations (see [18, 
221). Among these examples are regular DGs, in which a value function and a stable bridge are found 
by direct application of auxiliary programmed constructions (in actual fact, by the first iteration in the 
sense of the “indirect” version of the PIM). 

In this paper we will construct an example of a DG in which (for a very obvious solution in the form 
of a multivalued quasi-strategy) the “direct” version of the PIM generates a solution (quasi-strategy) 
only after an infinite number of iterations have been performed. The situation is thus analogous, in a 
sense, to that considered in [14,15]. The property in question is established using a special duality which 
relates “indirect”versions of the PIM, similar to those described in [8-151, and “direct”versions [18-221; 
this duality was discussed in [23]. The “indirect” versions in question are objectively simpler, since they 
work with sets in a finite-dimensional space. Moreover, in some cases one can parametrize the iterative 
procedure in such a way that it reduces to a recurrence procedure on the real line (such a construction 
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was considered in [14] in a few examples, later extended to a certain class of DGs (see [24], etc.), and 
finally realized [25] as a computer program). 

The version of the PIM considered in [18-221 is theoretical in nature and works with multivalued 
mappings in function spaces. In many cases, the duality of [23] essentially reduces the construction 
necessary to design a quasi-strategy to a form which is realizable in principle, as will be evident in the 
example considered below. 

1. THE SIMPLEST EXAMPLE OF A CONTROL PROBLEM WITH NOISE 

Let us consider the simplest control system C, defined by the scalar differential equation 

x=u+u (1.1) 

in the interval [0, 11. The zero initial position (0, 0), i.e. x(0) = 0, corresponds to the main problem. 
For consistency with the problem considered previously [lo, 141, let us assume that the admissible 
controls (the useful control and the noise control, respectively) are arbitrary Bore1 functions from 
[0, l] into [-2,2] and [-1, 11, respectively. In the first case, the set of all programmed controls is denoted 
by % (the elements of % are the useful Bore1 functions from [0, l] into L-2, 21 and they alone). In the 
second c,ase, the analogous set of possible noises u(.) is denoted by r/-. 

If the motion of system C (1.1) is considered over the interval [t*, 11, where 0 s t, d 1, from a state 
X* E R, we shall also use as controls, functions from the set “u and %“, respectively, although in actual 
fact only their restrictions to [t*, l] are “working”: if u(.) E % and u(.) E ‘V, then the trajectory 
4-y t*, x*, u(.>, v(.)) = (44 t*, x*7 UC.), W))f,[,*,,] of system C obviously corresponds to the function 

f H x, + j&d{ + fu (()dE, : [r,, l] + R (1.2) 
I* 1. 

where one uses either Lebesgue integrals or, more simply, integrals in the sense of [26, p. 691 with 
[0, l] equipped with the standard o-algebra of Bore1 sets. 

Of course, the use of such general constructions for Eq. (1.1) is in fact unnecessary; nevertheless, in 
that context it will be convenient to appeal to the general PIM of [lo, 141. Compared with previously 
considered problems [g-11, 13, 141, here we have a case in which the use of measure-controls is also 
superfluous, since the effect of working with the latter is achieved by working with Bore1 controls 
u(.) E % and u(.) E V. 

In this connection, for the specific case required below, we introduce a simplified definition of the 
operator sQw of [lo, 141, which is adequate for our purposes. Here M is the target set in the homing 
problem [3, Chap. III], defined by the condition 

M&((l,x):x~R, (x]N} (1.3) 

Of course, condition (1.3) defines a subset of the position space D + [0, I] x R. In connection with 
the general procedure of [lo, 141 (see also [5, p. 178]), we note that in what follows we shall be considering 
a control problem without phase constraints, which, in the earlier notation of [lo, 141, corresponds to 
the case N = D (in the more general constructions of [lo, 141, the letter N denoted the set that 
determined the phase constraints of the corresponding control problem). In view of these 
circumstances, we observe that the operator &,, like that introduced in [lo, 141, acts in the set 9 of 
all subsets of D, and for H E 9 it satisfies the condition 

3~~~f*,ll:((~,x(19,t*,~*,~(~),~(~)))~M)~ 

W5, ~(5, L, L, 4.)~ (.>>> E H, Vk E [L, WI 

Let B be the set of all closed subsets of D, 9 C 9; for H E 8 we have 

,rB,(H)=((t,,x,)~H(Vu(.)~gr3u(.)~~: 
(Ix(l,f*,x*,ut.),ut~))I~ I)& 
WCS. ~(5, t,. x, 9 4.h~ (.)I) E H, tJS E [L > 11)) 

(1.4) 

(1.5) 



An example of the construction of a multivalued quasi-strategy by iterative methods 727 

It follows from (1.5) that for sets in B the values of the operator S& defined by condition (1.4) are 
identical with those of the operator ti introduced in [5, pp. 178, 1791. Here we are taking into 
consideration the fact that the set M, as defined by (1.3), is naturally closed in D, as well as the fact 
that 9 is an invariant subspace of &,. Thus, in the language used in the notation of condition (1.4), 
thesetM= {(l,x):x~ R, 1x1 2 11, expressed as an iterative sequence Wk(k = 0, 1,2, . . .), that is 

(W,AD)&(W, =d,(Wk-,),Vjk~N) (1.6) 

where SIT g { 1,2 . . .}, has the property of convergence to the positional absorption set W,: the set W, 
is the intersection of all the sets W,(k = 0, 1, 2, . ..). 

Let us now consider a specific construction of the procedure (1.6), using the technique proposed in 
[14,24]. It essentially consists of the following: all iterations in (1.6) have the same form, differing only 
in the value of a certain parameter. Hence the procedure (1.6) may be reduced to iterations of this 
parameter. We introduce the set 

~~((~,.x)ED~~+I)E~ (1.7) 

and a mapping H from [0, l] into 9 for which 

H(~)~Wu([0,6]xR), 6~[0,1] (1.8) 

We shall consider H as a function of the set form in (1.6). 
We will show that Wk = H(I~~) (k = 0, 1,2, . . .). The corresponding sequence (fQ~zO will be described 

(see also [24]). Note that by virtue of definition (1.8) 

(W, = D = H(1)) & (W = H(0)) (1.9) 

By (1.9), the construction of the sequence (@J.& may be regarded as a certain passage from 1 to 0 
in parameter space. 

Note that for 6 E [0, l] one can define the set &,(H(6)). 
We also mention one fact previously established in [14] for a slightly different (but similar) problem 

(see also the survey in [5, $41); a similar proposition was presented in [24] for a more general case: if 
6 E [0, 11, then 

d, (H(6)) = H(fi/2) (1.10) 

For the sake of completeness, we will prove relation (1.10). Fix 6 E [0, 11. Let (t*, x,) E .s&(H(6)). Then, in 
particular, (t,, x,) E H(B). We will show that (t*, x,) E H(19/2). To prove this, we will consider separately the two 
possibilities implied by definition (1.8): either (t*,~*) E YV, in which case (t,,~*) E H(6/2), or 

(~,,x.)EH(x~)\W (1.11) 

Only the case (1.11) requires separate consideration. Then IX*, < t*. At the same time, it follows from (1.8) and 
(1.11) that t, E [0, u]. By the choice of (f,, x*), it follows from definition (1.8) that 

vu (.) E Flu(.) E % : (1 Sl x(l,t,,x*,u(~),v (*)) I)& 

&((5,~(5,tt,x,,u(.),u (.)I) E H(6), Vds E [b.ll) 

(we recall that (x*1 < t* G 8). Fix i?(.) E Ir. Using relation (1.12), choose i(.) E Gu. so that 

(1 ~(x(l,~,.x*.~(~).v(~))~)& 

(1.12) 

(1.13) 

This implies the inequality 

I9 q x(fhf*.x*,ii(~).~(~)) 1 (1.14) 

In fact, for 6 = 1 inequality (1.14) is the first proposition in (1.13). Let B < 1. Then 6 E [t,, 1[ and at the same 
time Vr E 119, l[: (T,x(~, t,,x*, i(.), U(.))) E H(19). 

Thus, (z, x(5, t,, x*, G(.), U(.))) E lili (see (1.8)), so that for z E 16, 1[ we have T c jx(~, f*, x,, U(.), U(.)) I. 
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We will assume 

fik =6+(1-6)/k, VkEN 

Then (t+Jksx is a sequence in 119, l[ that converges to r9 from the right. By the condition 

19~ ~(~(6~,f,,x,,U(.),~(.))I. Vk E X 

using the continuity of the trajectory, we obtain inequality (1.14) in the case 6 < 1 also. 
It is useful to observe that 

x(I*,I*.x*,iT(.),~(.))=x*, Ix(r*,r,,x*.U(.),U(.))I<t* 

which, compared with inequality (1.14) yields t, f B, that is, t, < 6. We recall moreover that Ix* ] < ta. 
We introduce the notation 

l9 
1/(6)& jf(r)dt, f=u,u,u.c- ,... 

1. 

It follows from inequality (1.14) that 

l9qx* +1,-(6))+l I;(lY>jqx* +1,-(6)1+2(19-r,) 

(we recall that the function U(.) was chosen arbitrarily). Thus, by inequality (1.15) 

Ix,+f”(6)(+2(6-r*)~:, tlU(.)EOCr 

It follows from (1.15), in particular, that 

vu (*) E ?ElU(~) E % :I x, + I” (6) + 1,(6) p 6 

(or course, this relation may also be derived from inequality (1.14)) 
Let us consider the following two possibilities 

1) 3u(~)E~:x,+1”(6)=0, 

2) Ix,+/,@)po, VU(.)Eqr. 

(1.15) 

(1.16) 

In Case 1, returning to relations (1.15) and (1.16) we obtain t* < 812. 
In Case 2 we havex, # 0. Let us choose a control u,(.) E ‘V as follows: define v,(t) I -sgn x, . Then 

X, + I,, (6) = 11 x* 1 -(fi - f, )Isgn xt (1.17) 

Suppose Ix* ] < 6 -t,, where, as already remarked, xY - t* > 0. Define a constant control by the rule 

v**(r) =-X*/(lY-l*), U**(.)ET 

(we already know that ] u**(t) ] < 1). Then 

x*+f”~(l9)=x,-x* =o 

which is impossible in Case 2. Hence Ix, I-(8 - t*) 2 0 and, as a corollary 

IX*+IU*(~)I=)X*I-(~-f*) 

Using the corollary to inequality (1.15) we obtain Ix* ] > t,, which is impossible. Thus Case 2 is impossible. We 
have thus shown that t, < v/2 and so (t*, x,) E H(19/2), proving that 

&u (H(fi)) c H(6/2) (1.18) 

We shall now show that in fact the right- and left-hand sides of (1.18) are equal. 

Let (t*,x*) E H(f+/2). In particular, (t*,x*) E H(I~). Then, by definition (1.8), we conclude that either 
(t*, x*) E W or t * =S 19/2. Note that in the first case we define a constant control u* E [-2,2], putting 
U * = +2forx* 3 Oandu” = -2 forx* < 0. We then have 
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~x(r,r*,x’,u’(~),u(~))~=~(x’+u’(r-r*))+z”(r)~~~x*+u*(r-r*)~-)I”(r)~~ 

+* /+2(r-r’)-(r-r’)=)x*~+(r-r*)br*+(r-t*)~r, VU(.)ESr, r E[P,l] (1.19) 

where u*(.) E Q is defined as u*(t) = u*, and I,(t) is defined (here and below) by integration over 
[t*, t]. Thus, in the case (t*, x”) E W it is true that 

(r,x(r,r*,x*,u*(~),~(~)))~~ 

W c H(6), u (.) E “cr, r E [r’,l] 

In addition, it follows from relation (1.19) that 

Ix(l,r’,x’,u’(.),u(.))I~ 1 

Since the choice of u(.) was arbitrary, consideration of condition (1.4) implies that in the case 
(t*, x*) E W we have the property (t*, x*) E s&(H(f+)). 

It remains to consider the case when (t*, x*) BE W, that is, IX* I < t*. Then t* < e/2. Choose 
a(.) E @V arbitrarily and, putting y* Ax* + 1$(e), define a(*) E % by the rule: a(t) A 2 sgn y* for all 
t E [0, 11. Then we have 

~(r,r*,x’,li(.),~(~))=x(B,r*,x’,li(.),t~))+~;(r)$r+j~(~)d~,VrE[2), 11 (1.20) 
6 * 

It can be seen that for the trajectory (1.20) 

Ix(r,t’,x’,U^(.), O(.))p~y’)+2(r-r*)-(r-i))ar+tb2r* ar, VfE[IY,l] 

(where we have taken into account that t* G iY2). Thus, 

(r,x(r,r*,x*,ri(~).~(~)))E~, t E[%ll 

(1.21) 

Consequently 
(r,x(r,r’,x’,u^C), C(.))) E H(6) 

for all t E [t*, l] (see (1.8)). It follows from inequality (1.21) that 

1 x(l,r*,x*,i(.), ir 6)) p 1 

It follows from relations (1.22) and (1.23) that for (t*, x*) 62 w” also, Vu(.) E ‘V 3u(*) E % 

(Ix(l,r*.x*,u(.),u(.))I~1)8r 

8r((r.x(r,r’,X’,U(~),u(~))) E H(6), Vr E[1*,11) 

From (1.4) we now deduce that in all cases (t*,~*) E &(H(ti)). 
Thus, H(fi/2) C s&(H(fi)). Since inclusion (1.18) has already been verified, we obtain equality (1.10). 

Consider the combination of relations (1.6), (1.9) and (1.10). Then W0 = H(1) and 

W, =d,(Wo)=dM(H(1))=H(1/2) 

(1.22) 

(1.23) 

The construction of the sequence (W& x , where X0 A (0) u X, now continues by induction. We 
know that W0 = H(1/2’) and W, = H(l/2’).“Let n E X be such that W, = H(1/2”). It follows from 
equalities (1.6) and (1.10) that 

W ,,+, =d,(W,)=&,(H(1/2”))=H(1/2”+‘) 

Thus, we have shown by induction that 

W, =H(l/2”)= Wu([O,1/2’]xR), VdkisN, (1.24) 
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In particular, W, is the intersection of all the sets (1.24), W C W,. But if (t*, x,) E W,YtV;then 
t, E [0, 1/2k] for all k E No, and so t* = 0 and then (t*, x,) = (0, x,) E W by definition (1.7) which is 
impossible. Thus W,\W = 0, that is, W_ = W (see [14]). C onsequently, we have constructed an 
“indirect” version (in the terminology of 119-221) of the PIM for the specific example considered here. 

2. ITERATIVE CONSTRUCTION OF A MULTIVALUED 
QUASI-STRATEGY 

In several publications ([16, 171, etc.) use was made of a formalization of the concept of game control 
in the class of what are known as quasi-strategies, that is, physically realizable responses to noise control. 
Arbitrary responses were termed “pseudo-strategies” [17]. Use was made in [5, 8-11, 13, 14,28,29] of 
multivalued quasi-strategies (essentially from the standpoint of the constructive design of solving control 
procedures), which, for non-linear problems of the theory of differential games, involved extending the 
space of controls by admitting sliding regimes. 

Iterative methods were proposed in [l&22] for constructing multivalued quasi-strategies; these 
methods were essentially direct versions of the PIM (in these publications, abstract control problems, 
not necessarily reducible to differential games, were considered; we shall not dwell on the procedures 
of [l&22] in all their generality). Below a more specific representation of the constructions of [19-221 
will be used for the case of the problem of guidance (or homing) to M (1.3). 

We take the trajectories (1.2) for t* = 0 and X* = 0 as basic; the “null” position (0,O) E 5% is chosen 
as the initial position. Working in accordance with the procedure of [23], we introduce a natural type 
of multivalued quasi-strategy (an analogue of that considered in 1171) solving the M-homing problem. 

If (t*,x,) E 9, u(.) E % and u(.) E V, then 

x, (.P t* 9 x* t 4.M (.)I = (x, (6 f* 9 x* 9 u(.),u mI,,, 

will denote the continuous function in C A C([O, 11) for which 

(X+(~,t*,X*,U(.),U(.))=X*, Vf E[O,L[)& 

If t* E [0, 11,x, E R and u(.) E V’, then [23] 

%(t*,x*), u(.))=(X,(.,t*,X*,U(.),U(.)):U(.)E~L) (2.1) 

We have here introduced a pencil of trajectories continuing the trajectories (1.2) to the left, for fixed 
noise control v(s). In particular, for t, = 0 and X* = 0 relation (2.1) defines a pencil of ordinary 
trajectories. Proceeding as in [18-221, we introduce the required multivalued quasi-strategy: in terms 
of the family 8(C) of all subsets of C, we define an operator % acting from V into Y(C) by the rule 

% (u (.)I 2 Ix E Y((O, Qu (.)> ] 1 q x(l) 11 (24 

The above-mentioned multivalued version of a pseudo-strategy [17] has the form of %. 
The aim of the forthcoming constructions is to translate this “pseudo-strategy” into a multivalued 

quasi-strategy which, in the class of trajectories of system (l.l), will solve the problem of guaranteed 
realization of the condition lx(l) ] 2 1. In this connection we observe that 

x, (; 0, 0, u(.>,u (.)) = xc, 0, 0, u(.),u (.)), 4.1 E q.4 u (.> E 7f (2.3) 

Taking this into consideration, we obtain 

wo, 0)JJ (.)> = I-e., 0, 0, u(,>,u (.)I : 4.) E %) , u (.) E v (2.4) 

Thus, the operator % (2.2) may be defined (see (2.4)) in terms of trajectories of system (1.1): 

92 @ (*I) = I-e.9 090, u(-),u (.>I : 4.) E % 1 q x(1,0,0, u(*hu (.)I I} 

Let M(%‘“, C) be the set of all mappings from r/‘ into p(C). In other words, M(‘V, C) is the set of all 
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multivalued mappings from @V into 9(C). In particular, % E M(Sr, C). Following the procedure of [19-221, 
we introduce the following special operator in M(Sr, C), which translates % into a multivalued quasi- 
strategy guaranteed to solve the main problem. If w E ‘Y and t E [0, 11, we define [22, p. 251 

RO(wIt)~{I?,ESr(W(r)=iG(r), vrE[O,t]) (2.5) 

Of course, w = u(.) and ii; = V(e) for W E Q’(w/t) are Bore1 functions from [0, l] into [-1, 11. 
Define an operator 

I- : M(T, C) + M(=V, C) (2.6) 

by the following rule 

r(a)(w) g If E a(w) 1 Vr E [0, 1 ]Vti E R”(w 1 f) 

3! E a(6) : f(r) = j(r), Vr E [OJ]), a E M(‘V,C), w E V 

With the operator (2.6) (2.7) we associate the sequence of its finite powers 

rk : M(Sr, C) -a M(=V, C), k E No 

(2.7) 

W-9 

for which, as usual 

(r’(a) = a, Va E M(Sr,C))& (rk = r 0 I+‘, Vk E X) 

where 0 denotes the operation of superposition. We complete the sequence of powers (2.8) by adding 
the infinite power I” (for details, see [19-221) defining 

by the rule 

r” : M(=V, C) + M(Sr, C) (2.9) 

r”(a)(w) k n?(a)(w), a E M(“Cr,C), w ET 
. k 

Here and below (in similar cases) we mean the intersection over all k E X0. 
In accordance with a previous result [22, Theorem 5.11, in order to achieve our goal it is important 

to evaluate (P(q) kG.k’,, and the multivalued mapping I-(%). Put ‘GIk A Fk(%), Vk E No and, in addition, 
let %, k I-(%). It is then obvious from the definition of the sequence (2.8) that 

(2.10) 

This is the basic iterative process. By definition (2.9) of F, we now have the following representation 
for %, = r-((e) 

%ie, (w) = T%k (w), w E v (2.11) 

Of course, Eq. (2.11) may be used to express %, as the limit of (%k)keK. To that end, we note that, 
by virtue of relation (2.10) Se,(u(.)) C %e,-i(u(‘)) for k E JY’ and u(a) E V. In combination with 
representation (2.1 l), this means [30, Chap. l] that for w E Ir we have monotone convergence (%k(W))kcAr 
k%,(w). This property has been interpreted in [19-221 as pointwise convergence in the space of 
multivalued mappings; in the notation of [22, p. 2251, 

fik )keN ‘%.a (2.12) 

Note that the construction of the operator I corresponds to that adopted in [19-221, so that the 
previous results may be used in the specific case under consideration. 

We will now describe how the basic parameters of the general formulation [19-221 are to be specified. 
The set X (see [19-221) will be the interval [0, 11; the set Y is defined as [-1, 11, and the family ZZ of 
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[19-221 as {[O, t] : t E [0, 11); (Y, 7) of [19-221 is identified with (R, zn), where rR is the usual 1. ]-topology 
of the real line R; as the set 2 of 119-221 we use the set C = C([O, 11) of all continuous functions from 
[0, l] into R; and the set Q of [19-221 will be ‘?‘“. Under these conditions, we have 

Q,(wJA)=R"(w)t), w E i-2, A = [O,tl, t E [O,l] 

The set SJo(w ]A) is defined as in [21, p. 691. 
Under these assumptions, with due note of definition (2.7) the operator I of [19-221 is given by the 

expressions 

~(a)(w)=(f~a(w)~VA~W~~Eo(w(A) 

gjEa(fi):(f]A)=(j]A)} = 

= (f~a(w)JVr~[O,l]V~~~“(wJt) 

3l E a(G) : f(~) = f(~t>, VT E [O,t]], a E M(T,C), w E ‘T 

Finally, we note that the multivalued mapping % of (2.2) is necessarily compact-valued in the sense 
of the uniform convergence topology in the space C (in more general cases of non-linear systems one 
has to use generalized solutions, as was done previously in [7-l 1, 13, 141). 

Thus, if u(.) E v the set %(u(.)) is compact in C in the uniform convergence topology. At the same 
time, in previous theorems [19-221 use was made of another topology, namely, that of pointwise 
convergence in Z = C (we recall that (Y, z) of [19-221 here is identical with (R, rn)). 

It is we11 known, however [31], that the pointwise convergence topology in C is weaker than the uniform 
convergence topology, and then for v(a) E v the set %(u(*)) is also compact in the sense of the pointwise 
convergence topology in C. Thus, the mapping % is compact-valued in C with the pointwise convergence 
topology. Thus, all conditions of Theorem 5.1 of [22] are satisfied. 

We will now present the specialized version of that theorem. We introduce a (partial) order on the 
non-empty set M(v, C), denoted by C, as follows: 

def : (a, E a,)e(a,(u(.))c a,@(.)), V’~(,)E y) 

Va, E M(Sr,C), Va, E M(V,C) 

(2.13) 

In particular, as the definition of a2 in (2.13) one can use the multivalued mapping %. 
Consider the non-empty set N 4 {a E M(y, C) la = l?(a)> (of ail tixed points of I, that is, the set 

of al1 non-anticipatory multivalued mappings on Q = y). From now on N will be understood only in 
this last-defined sense. Then (see (2.13)) 

(2.14) 

is the set of all non-anticipatory multi-selectors of the multivalued mapping %. The elements of (2.14) 
are similar to the multivalued quasi-strategies of [5, 8-14, 28, 291, but at isolated “points” of v they 
may take the empty set 0 as a value. In particular, the constant multivalued mapping a0 E M(r/^, C) for 
which ae(u(.)) = 0 is an element of (2.14). On the other hand, as shown in [21, 221, the set (2.14) has 
a largest element in (M(v, C), C), denoted by (na)[%]; it is the mapping from v into the family of all 
subsets of C for which [22, §5] 

(na)W I@ f.N = aEgIq,W (3, Vu (.) E 7f 

It is well known [21,22] that (na) [%] E No[%] and in addition 

acW@l, VaENO[(el 

(2.15) 

Thus, (na)[%] is the required C-largest element of No@]. 
According to Theorem 5.1 in [22] ( see also [21], Theorem 4.16) we have P”(T) = (na)[%]. Taking 

relations (2.10) and (2.11) into consideration, we have the following representation for the multivalued 
mapping (2.15) 
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(WY 1 =S, (2.16) 

Note that representation (2.16) is necessarily a multivalued quasi-strategy, that is, for I$.) E V”, 
invariably %L,( v(.)) f 0. 

Indeed, let us consider a constant control 11~ E %, assuming that U?(t) A 2 for t E [0, 11. We now introduce a 
mapping at from ?r into C, setting 

= 6 qmiz+i. u(t)dT, VUC)Eqr. VtE[o.l] (2.17) 
0 

It follows from (2.17) that a? is a non-anticipatory mapping in the sense of [16, 17, 271, that is, a (single-valued) 
quasi-strategy. Let us introduce a “fictitious” multivalued map 
u(.) E V”, the condition at(U(.)) = {a?(t)(.))) is satisfied. Clearly, a P 

ing a? E M(?r, C) by the following rule: for 
E N. At the same time, it follows from definition 

(2.17) that 

1 
at@(.))(l) 3 j U (t)ffr - 1 = 2 - 1 = 1, 

0 t 
Vu(.) E Sr (2.18) 

Thus, by equality (2.4) 

aT (u (.I) E WO. O),U (~)),u (.) E gr 

satisfies inequality (2.18), that is (by equality (2.4)) ar(v(.)) E %(u(.)). As a corollary, at c Se, and then, since a? 
is non-anticipatory, it follows from definition (2.14) that aT E Na[%] and so a? c (na)[%]. 

Hence 

aT (u (.)I E (na)W I@ (.)I, Vu C) E gr 

Thus, in representation (2.16) C,(v(.)) f I$. 

Since (na)[%] is a multivalued quasi-strategy, (na)[%] is a non-anticipatory multivalued mapping with 
non-empty values. In addition, it follows from the property (na)[%] E No[%] that this multivalued quasi- 
strategy solves the problem of homing on M (1.3) ( see the definition of %). Finally, by definition (2.15) 
this quasi-strategy is largest in (M(7r, C), C) among all quasi-strategies that solve the main homing 
problem. Relation (2.15) defines the multivalued quasi-strategy (na)[%] as the limit of an iterative 
procedure which is essentially a direct version of the PIM. 

It is well known that in many cases (for specific differential games), procedures based on the PIM 
provide a solution of a DG after a finite number of iterations ([5, 8, 91, etc.). At the same time, it is 
sometimes necessary to construct the entire sequence of iterations [15]. However, this pertains to 
“indirect” versions of the PIM, that is, to slightly different iterative procedures. Examples constructed 
for “direct” versions of the PIM have shown that the solution may be implemented in two iterations, 
even counting the zeroth approximation [19,22]. 

Using previously established propositions [23], we shall show that in the case considered here the 
“direct” version of the PIM requires (as before [15]) the construction of the entire infinite sequence 
of iterations. To that end, we shall introduce a more convenient representation of the operator &. 
The following conventions will be adopted. If H is a subset of D, z* = (t*, x*) E D and u(e) E Y, then 
II( v(.) ]z*, H) will denote the set of all h E S(z,, v(.)) such that 

319 E [t*,Il : ((WI(~)) E WC% ((t,hW) E H, Vf E It., W (2.19) 

Now, as in [23], let us assume that the operator A: Y(D) -+ 9(D) is defined by the rule 

A(H)A(ze H~l-I(u(~)~z,H)#0, VIJ(.)E?'-}, HECP(D) (2.20) 

Definitions (2.19) and (2.20) correspond to the previous ones [23] provided that (in the earlier notation 
of [23]): to = 0, e. = 1, L2 = V. By (1.4), (2.1) and (2.19) we have the obvious equality A = 9QM, that 
is, A(H) = d&H). 
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3. CONSTRUCTION OF A MULTIVALUED QUASI-STRATEGY 
USING DUAL CONSTRUCTIONS OF THE PROGRAMMED 

ITERATION METHOD 

We shall now use (1.24) and certain propositions known from [23] to verify the property 

O-N% 1 ek, bfk E NO (3.1) 

In this connection, we note that the mapping S defined by (2.1) which takes D x V into the family 
S’(C) + P(C)\(0) of all non-empty subsets of C, satisfies all the conditions listed in 1231. Then [23, 
Lemma 5. l] 

W-U- 1 (O,O), HI) = nt. 1 (O,O).A(H)), H E g’(D) (3.2) 

By (1.3), (2.2) and (2.19), we have 

NJ (.) 1 (O,O),D) = {h E S((O,O),u (.)) ]] h(l) ]a 1) = % (v (.)X V’v (.) E ‘V (3.3) 

This means that II(. ] (0, 0), D) = %. 
It follows from expressions (3.2) and (3.3), in particular, that 

I-@ ) = W-K. I@, 01, D)) = W. I@, Oh A(D)) 

Taking relations (1.24), (2.10) and the equality A = L& into consideration, we obtain 

%j = l-f%,, ) = r@ ) = l-l(. 1 (O,O), A(D)) = 
. 

= n(. ] (o,o), ~0% 1) = n(- ] (0, o), w, ) = n(. ] (0, o), H(i / 2)) (3.4) 

This relation may be extended by induction to any number k E Jy”, in the following sense. 

Proposition 

%,=lI(.](O,O),H(1/2’)), VkeN 

Proof. By Corollary 5.1 and Theorem 5.1 of [23] 

rk(W 1 (O,O),D)) = II(. ] (O,O), Ak(D)) = 

= l-l(. 1 (O,O),d; (D)), Vk E X 

(3.5) 

As a corollary (see (2.10)) 

(3.6) 

Using relations (2.10) and (3.6), we obtain 

‘&k = nc 1 (o,oh d; (D)) 
But it follows from formulae (1.6) and (1.24) that 

&b(D)= w, =H(l/2’) 

Taking relations (2.19) and (3.3) into consideration, we deduce from (3.6) that 

(ek=n(.l(o,o),H(i/2’)), vkE.&, (3.7) 

We now consider the representation established in [23] for the mapping %, defined as in [22]. By 
Corollary 5.2 of [23] and formula (2.11) we have 

%,= n(a 1 (O,O),A”(DN (3.8) 
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The operator A” is defined as in [23]. Here it is essential that 

A”(D) = f-l A’(D) = n da”, (D)=n W, 
k k k 

Taking formula (1.24) into account, we have 

A”(D)=n H(1/2k)=%‘-m =“b)r 
k 

But it then follows from representations (3.8) and (3.9) that 

%¶ = lx. I(09 o>, WI 

Since W C H(1/2k) fork E SIT,,, it follows from relations (2.19), (3.7) and (3.10) that 

‘%, (U (*)) =%, (IJ (*)), V’k E Novu c) E v 

Theorem. The following property holds 

%,#%,, Qkc.NO 

Proof. By relations (3.7) and (3.10) 

@, = n(. ItO, 01, H(1 / zk 11, Vk E .ffo) & ce, = fl(. Ito, oh w>) 

By virtue of inclusion (3.11) it will suffice to establish that 

Vk E .h-,% (.) E v :%, (U (*))\se, (V (*)) f 8 

We shall use equality (3.13). Fix n E SIT”. Then we have 

%e,=n(,1(0,0),H(1/2”)), H(112”) = 

= =Wu([O,1/2”]xR) 

(the representation of the set H( l/2”) follows from definition (1.8)). 

735 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

Note that w 2 (l/2”, 112”) E “Mr. If 8 E [0, l/2”], we consider the functionfa : [O, l] + [O, -1 for which 
fs(t) A 2(t - 0). If 0 E [0, l/2”], then l/2” E [O, 11, and the function valuefe(1/2”) E [0, 03 [ is well defined. 

The simple equationfe(1/2”) = l/2” has a solution 

8, =1/2”+’ (3.16) 

We can now establish that if 0 E r/” is the control defined as identically zero, then 

se, w’&, (0) * 0 (3.17) 

Indeed, suppose the function q,(.) = (II”(~) E R, 0 s t c 1) E %1 is such that 

(uo(t)~O, vr E[O,e()[)&(Ug(t)~2, vrE[e(-J,ll) (3.18) 

By (2.4), we conclude that the trajectoryx,)(.) = (x,(t), 0 G t G 1) defined by the condition x0(.) = x(., 0, 0, Us, 
0) is an element of the set S((0, 0), 0): 

x0(.) E WO.O).O) (3.19) 

It follows from relation (1.2) that 

x0(t) = x(r,o,o,u,(~).o)= i uo(r)dr, VI E[O,I] (3.20) 
0 
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Hence we conclude that if t E [O, e,], then x0(t) = 0, and for t E [Ho, l] 

x&t)= j 2dt=2(r-80)=fe,(‘) (3.21) 
&l 

It is clear that, by virtue of the second equality in (3.153, (t,~(t)) E H(li2”) fort E [0, l/2”]. Now, using relation 
(3.21), we have 

xo(t)=2(r-e0)=2(r-1/2”+‘) = 

= r+(t-1/2”)3t, tE[1/2”,1] 

This means that, by definition (1.7), 

(I.X&))Ew-, VfE[112”,1] 

Consequently 

(t,x,(r))~H(112”), k”t~[O.l] (3.22) 

Next, by the definition of fe,,, ye have x0(1) = 2-112” 2 1. Therefore, (1, x0(l)) E M. Taking relations (2.19). 
(3.19) and (3.22) into consideration, we have the property 

X,(~)Enco~co,o,,H(1~2")) 

that is 

.ro(.) E’G;” (0) 

On the other hand,xo(OO) = 0 for the time &I E 10, l[, defined by (3.16); hence I.~(f3~) 1 < O,, and consequently, 
by definition (1.7) 

@,J,@,))rrW (3.23) 

Returning to condition (2.19) we observe that 

x~(.)E ncoIco.ohw 

and, as a consequence, it follows from (3.13) that 

-Q(,) e%.? (0) (3.23) 

It follows from property (3.23), (3.24) thatXg(.) E %,(O)\%;,(O). This proves relation (3.17) 

The validity of property (3.17) implies the validity of proposition (3.14), since II was chosen arbitrarily; 
this completes the proof of the theorem. 

This research was supported financially by the Russian Foundation for Basic Research (00-01-00348, 
01-01-96450) and the International Scientific-Technical Center (1293). 
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